Osciladores a Cristal de Cuarzo

Introducción a los Cristales de Cuarzo

El cristal de cuarzo es utilizado como componente de control de la frecuencia de circuitos osciladores convirtiendo las vibraciones mecánicas en voltajes eléctricos a una frecuencia específica.
Esto ocurre debido al efecto "piezoeléctrico". La piezo-electricidad es electricidad creada por una presión mecánica. En un material piezoeléctrico, al aplicar una presión mecánica sobre un eje, dará como consecuencia la creación de una carga eléctrica a lo largo de un eje ubicado en un ángulo recto respecto al de la aplicación de la presión mecánica.
En algunos materiales, se encuentra que aplicando un campo eléctrico según un eje, produce una deformación mecánica según otro eje ubicado a un ángulo recto respecto al primero.
Por las propiedades mecánicas, eléctricas, y químicas, el cuarzo es el material más apropiado para fabricar dispositivos con frecuencia bien controlada.
La siguiente figura muestra la ubicación de elementos específicos dentro de una piedra de cuarzo


De los cortes que se pueden hacer, el corte "AT" es el más popular y es fabricado hasta frecuencias relativamente altas, mostrando una excelente estabilidad de frecuencia frente a las variaciones de la temperatura.
La siguiente gráfica muestra la variación en partes por millón (PPM) con respecto a la temperatura.

Frecuencia Fundamental vs. Frecuencia de Sobretono
Esto es de importancia cuando se especifica un cristal. Cuando se incrementa la frecuencia solicitada, el espesor del cuerpo del cristal disminuye y por supuesto existe un límite en el proceso de fabricación. Alrededor de 30MHz, el espesor de la placa del cristal comienza a ser muy delgada.
Debido a que el corte "AT" resonará a números enteros impares múltiplos de de la frecuencia fundamental, es necesario especificar el orden del sobretono deseado para cristales de altas frecuencias.

Potencia de trabajo (Drive Level)
Es la potencia disipada por el cristal. Está normalmente especificada en micro o milivatios, siendo un valor típico 100 microvatios.

Tolerancia en la frecuencia
La tolerancia en la frecuencia se refiere a la máxima desviación permitida y se expresa en partes por millón (PPM) para una temperatura especificada, usualmente 25°C.

Estabilidad de la frecuencia
La estabilidad de la frecuencia se refiere a la máxima desviación en PPM, en un determinado rango de temperatura. La desviación esta tomada con referencia a la frecuencia medida a 25°C.

Envejecimiento
El envejecimiento se refiere a los cambios acumulativos en la frecuencia del cristal con el transcurrir del tiempo. Los factores que intervienen son: exceso en la potencia disipada, efectos térmicos, fatiga en los alambres de armado y pérdidas en la elasticidad del cristal.
El diseño de circuitos considerando bajas temperaturas ambientales y mínimas potencias en el cristal reducirán el envejecimiento.

Circuito Eléctrico Equivalente
El circuito eléctrico equivalente que se muestra a continuación es un esquema del cristal de cuarzo trabajando a una determinada frecuencia de resonancia. El capacitor Co o capacdad en paralelo, representa en total la capacidad entre los electrodos del cristal más la capacidad de la carcaza y sus terminales. R1,C1 y L1 conforman la rama principal del cristal y se conocen como componentes o parámetros motional donde:

  • L1 representa la masa vibrante del cristal,
  • C1 representa la elasticidad del cuarzo y
  • R1 representa las pérdidas que ocurren dentro del cristal.

Curva de Impedancia
Un cristal tiene dos frecuencias de fase cero, como se ven en la siguiente figura. La más baja es la Frecuencia de Resonancia Serie indicada como fs. En éste punto el cristal se comporta como una resistencia en el circuito, la impedancia está en un mínimo y la corriente que circula es la máxima. A medida que se incrementa la frecuencia, el cristal pasa por la Frecuencia de Resonancia Paralelo y llega a la frecuencia de Antiresonancia fa en la cual la impedancia es máxima, y las reactancias de la L1 y la Co se cancelan. En éste punto, la corriente que circula por el cristal es la mínima.-

Factor de Calidad (Q)
El factor de calidad (Q) es una medida de la eficiencia de la oscilación. La máxima estabilidad obtenible de un cristal depende de el valor de "Q". En la figura de la impedancia del cristal, la separación entre las frecuencias serie y paralelo se llama ancho de banda. Cuanto más pequeño el ancho de banda mayor es el "Q". Cambios en la reactancia del circuito externo tienen menos efecto (menos "pullability") en un cristal de alto "Q" por lo tanto la frecuencia es en definitiva más estable.-


Circuitos Osciladores


Circuitos Osciladores Serie
Un circuito básico oscilador resonante serie, utiliza un cristal que está diseñado para oscilar en su frecuencia resonante serie natural. En éste circuito no hay capacitores en la realimentación Los circuitos resonantes serie son usados por la baja cantidad de componentes que se utilizan, pero estos circuitos pueden tener componentes parásitos que intervienen en la realimentación. y en el caso que el cristal deje de funcionar oscilarán a una frecuencia impredecible. El esquema del circuito oscilador serie es:



De la figura del circuito básico del oscilador resonante serie se ve que no existen componentes para ajustar la frecuencia de oscilación. R1 es utilizado para polarizar el inversor en su región lineal de operación y además provee realimentación negativa al inversor. C1 es un capacitor de acople para bloquear la componente de continua. R2 está para controlar la potencia que se entrega al cristal, limitando la corriente a través de él.

Circuitos Osciladores Paralelo
Un circuitos oscilador paralelo utiliza un cristal que está diseñado para operar con un valor específico de capacidad de carga. Esto resultará en un cristal que tendrá una frecuencia mayor que la frecuencia resonante serie, pero menor que la verdadera frecuencia resonante paralelo.
Un circuito básico se muestra a continuación.



Este circuito utiliza un inversor simple para hacer el oscilador, donde R1 y R2 cumplen las mismas funciones que en el circuito del oscilador resonante serie, con dos capacitores en la realimentación, que componen la capacidad de carga y en conjunto con el cristal darán lugar a la frecuencia a la cual oscilará el circuito. O sea que ajustes en los capacitores de carga, darán lugar a una variación pequeña en la frecuencia de oscilación, permitiendo un ajuste fino de la misma. El cristal es resonante paralelo, especificado para trabajar con una deteminada capacidad de carga a la frecuencia deseada y con la tolerancia y estabilidad deseadas. La capacidad de carga para el cristal en este circuito puede ser calculada con la siguiente fórmula:


donde para inversores de las familias lógicas CMOS de alta velocidad:
  • Cs es la capacidad parásita del circuito y normalmente se estima entre 3pf a 10pf.
  • R1 es del orden de 8.2 MOhm a 10 MOhm
  • R2 es del orden de 470 Ohm a 2200 Ohm

Capacidad de ser Cargado (Pullability)
Son los cambios de frecuencia de un cristal, ya sea de su frecuencia de resonancia natural Fr a una frecuencia FL de una carga resonante, o desde una carga resonante a otra. Esta cantidad depende de la capacidad en paralelo Co, de la C1 del cristal y la CL de carga.
En la siguienta figura se muestra la variación de frecuencia en función de la capacidad de carga, expresada en PPM.

Circuito Oscilador con transistor
Visitar vínculo, para ver diseño completo.-